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Summary.  Offspring-parent  regression is often used to 
estimate the heri tabil i ty of a quanti tat ive trait. I t  is shown 
that  for a purely binary trait, the regression of offspring 
on one parent  is always linear, while that  on both parents 
or mid-parent  is generally nonlinear.  However,  the re- 
gressions are linear on a logistic scale. 
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Introduction 

Offspring-parent  regression is often used to estimate the 
heri tabil i ty of a quanti tat ive trait. The assumption of 
l ineari ty of the regression function is usually accepted by 
plant  and animal  breeders. However,  the problems 
caused by nonl inear i ty  have been recognized and dis- 
cussed by some workers  (e.g., Rober tson 1977; Bulmer 
1980; Gimelfarb 1986). As an example of experimental  
evidence, Rober tson (1977) and Maki-Tani la  (1987) dis- 
covered curvature in offspring-parent regression for bristle 
number in Drosophila, and proposed  several models  of 
gene act ion to explain this phenomenon.  

In this article, we are concerned with the offspring- 
parent  regression for a binary trait. Some authors  have 
studied this problem assuming an underlying normal ly  
distr ibuted "liabili ty" variable (Falconer  1965; Thomp-  
son et al. 1985). However,  we assume in this paper  that  
the trait  is purely binary, without invoking the existence 
of "liability". It is shown that  the regression of offspring 
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on one parent  is always linear, while that  on both parents  
or  mid-parent  is generally nonlinear. 

Regression on one parent 

Consider  a binary trait such as "alive" versus "dead", or 
"diseased" versus "healthy". Suppose that individuals are 
given a score 1 if they have the at tr ibute and 0 if they do 
not. Let the random variable (X, Y) be the scores of a 
parent-offspring pair. The mean value of an offspring 
given the phenotypic value of a parent  can be written as" 

E(u x = x) 

= E(YIX = 0) + [E(YIX = 1 ) -  E(YIX = 0)] x. (1) 

When x = 0, the above becomes E (Y IX = 0); when x = 1, 
one obtains E (Y IX = 1). Thus, the regression of offspring 
on one parent  is always linear. 

If Pxy denote the jo int  probabil i t ies Pr(X = x, Y =  y) 
for x, y = 0,1, then the slope of the regression is: 

f l =  E(YIX = 1 ) - - E ( Y I X  = 0 )  

= [(0) Pr(Y = 0IX = 1) + (1) Pr(Y = 1 IX = 1)] 

- [(0) Pr  (Y = 01X = 0) + (1) Pr (Y = 11X = 0)] 

= p r ( y =  1IX = 1 ) _  p r ( y =  1 IX = 0) = Plx Pox (2) 
Pl + Po + 

where px+ = Px0 + pxx; (x = 0, 1). 

Maximum likelihood estimation of  fl 

Suppose that  (xx, Yl) . . . . .  (xn, Yn) are the realized values 
of the binary trait  for n unrelated parent-offspring pairs 
in a randomly mating populat ion.  Let nxy be the frequen- 
cies of occurrence of (x, y) for x, y = 0,1. Then the distri- 
but ion of (nxy) is mult inomial  with parameters  n and (Pxy). 
The maximum likelihood est imator  of Pxy is nxy/n + +, 



where n§ + = noo + nol + nto + n 11. Using the invariance 
property of maximum likelihood estimates in (2), it fol- 
lows that the maximum likelihood estimates in (2), it 
follows that the maximum likelihood estimator of the 
regression is 

fl = ni l  n~ . (3) 

n l o +  n i l  noo + nol  

The standard error of fi can be readily obtained using the 
5-method (Aickin 1983). The statistic 2fl gives an estimate 
of the heritability of the binary trait. 

Relationship with the coefficient of correlation 

Under normality of (X,Y), the slope of the regression and 
the correlation coefficient are equal when the variances 
are the same. Such a relationship also holds true for a 
bivariate (0,1) distribution. Suppose that X and Y have as 
joint distribution 

Pr (X = x, Y = y) (4) 

[ Q ( x -  p) ( y -  q) ] ,  
=p~ (1 -p )~ -XqY(1 - -q )  ' - y  1 +  x/P (1-- p) q ( l - q) / 

where Q is the correlation coefficient between X and Y, 
and p and q are marginal probabilities of 1 for X and Y, 
respectively (Hamdan and Martinson 1971). Note in (4) 
that when ~ = 0 and x = y = 1, Pr(X = 1, Y = 1) = pq. This 
is the result that one would obtain under independence 
assumptions. 

If E ( X ) = E ( Y ) = p = q ,  then V a r ( X ) = V a r ( Y ) =  
p ( 1 -  p). Using this in (4): 

Pr(X = x, Y = y) 

[ ( x - p ) ( y  - p ) ]  (5) 
= p X + y ( / _ p ) 2 - x - y  I + Q  P ( 1 - P )  ] .  

Application of (5) gives 

Pll  = p2 [1 +Q(I  - p)/p] 

Plo = Pol = P ( 1 - p ) ( 1 - Q )  

Poo = (1 - p ) 2  [1 + Q p/(1 -p) ] .  

If (2) is written in terms of the above probabilities, one 
obtains as slope of the regression line: 

p2 [1 +Q (1 - p)/p] 
f l =  p (1 - p) (1 - Q) + p2 [1 + Q (1 - p)/p] 

p(1 --p)(1 --e) 
( l - - p ) 2 [ l + Q p / ( 1 - - p ) l + p ( 1 - - p ) ( 1 - - 0 )  = e '  (6) 

with fl = 0 following after algebra. Therefore, if X and Y 
have the same mean, and thus the same variance, the 
correlation coefficient and the slope of the regression are 
equal. 

If (x i, Y0 are records of n indepent individuals, and 
E(X) = E(Y), then fl = Q is repeatability. Rutledge (1977) 
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compared several estimators of repeatability of a thresh- 
old trait by Monte Carlo methods. Not  surprisingly, he 
concluded that fl, referred to as Lush's estimator, was a 
poor  estimator of the correlation on the liability scale and 
that estimates of correlation on the two scales should not 
be used interchangeably. However, fl is a sensible estima- 
tor if variation is purely binary. 

Regression on both parents 

Let Xi, X 2 be scores on the two parents, Y be the off- 
spring score and let 

p .. . .  y = Pr(Xi = xi, X2 = x2, Y =  y). 

Define 

n .. . .  = P r ( Y =  1 IX i = xl, X 2 = x2) , 

so that 

Pxlx21 
g . . . .  - -  ; (Xx, X2) = 0, l .  (7) 

Px~x2O + Px~x21 

The mean value of an offspring given the score of the 
parents is 

E(Y I Xa = xl,  X2 = x2) (8) 

 pol Fpl  ? . . . .  . . . .  = ( o ) /  - - -  + ( 1 )  . . . . .  ~ . . . .  
kPx~20 + Px~x21 t_P . . . .  0 + Pxlx21 j 

with values: 
7too when x i = x  z = 0  

rrol when x l = 0 , x  z = l  

7ho when x ~ = l , x  2 = 0  

rql  when x x = l ,  x 2 = l .  

Thus, the regression of offspring on both parents can be 
written as 

E(YIX i = x  i , X  2=x2)  

= ~00+ ( r q o -  %0)Xl + 0roi - rbo)X2 

+ (rOll - trio - rco l  + %o)Xi x 2. (9) 

For  example, when xl = x2 = 1, (9) gives n~l, as it should 
be. Unlike the usual normal model, the regression of 
offspring on both parents is generally nonlinear. There is 
an interaction between the scores of the parents on the 
probability that their offspring has the trait. 

If parameters are the same (%1 = Zqo) in males and 
females, (9) reduces to 

E(YI X1 = xl, X2 = x2) (10) 

= 1too + ( ~ l o -  Zroo)(Xi + x2) + (7rii - 2Zrio + noo)Xi x2. 

The regression on the mid-parent value, ~ = (x~ + x2)/2, 
is then 

E(YIX =~)  

= ~oo + 2 (~io-- ~oo) ~ + (~i i -- 27ri0 + ~oo)61 (x), (11) 
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where 

1 if ~ = 1  

6a(~)= 0 if ~ # 1 .  

Thus, the regression on both parents and the regression 
on mid-parent  are linear only if the difference in condi- 
tional probabilities is additive, that is: 

/'Coo + 7Eli 
~i0 - -  2 

or, equivalently 

7~11 - -  TCIO : TClO-- /'CO0. 

In general, these regressions are not linear and the off- 
spring mid-parent  regression cannot  be used to estimate 
the heritability of a binary trait. 

R e g r e s s i o n  o n  a l o g i s t i c  s c a l e  

Applying a log-linear model to the joint  probabilities 
p . . . .  y, we show that the regression on both parents or on 
mid-parent  values is linear on a logistic scale but not on 
the observed scale. Consider the model 

log p . . . .  y= # + ~ (xx + x2+ Y) + O(xiy + x2y), (12) 

which is a log-linear model with no interaction between 
the parents (x~ x2). With this model, and employing (7) the 
conditional probabilities are given by: 

e(U +,) e ~ 
- - (13a) 

n~176 eU+e  (~+~) 1 + C '  

eU+2a+0 e~+0 
nlo = Xoi = eU+~ + eU+2~+ 0 - 1 + C +~ (13b) 

eU+ 3a+o e a + 20 
(13c) Tell = e u+2a + e t~+3~+~ -- 1 + e ~ + 20 

Using (8) 

E(YIX i = x l ,  X 2 = x 2 )  - 
Pxlx21 e a+0(x t  +xz) 

Px~x2O + Pxxx21 1+  C+~ )" 

(14) Also 
e a + 2 0 ~  

E(YI X = ~) = 1 + e ~+2~ (15) 

Thus, the regressions on both parents or on mid-parental  
values are linear on a logistic scale, the functions being 
c~+0(x l+x2)  or e + 2 0 L  but not so on the observed 
scale, as can be readily ascertained by differentiating (14) 
of (15) with respect to the parental scores. 

The parameters e and 0 can be estimated by maxi- 
mum likelihood. The distribution of the frequencies nxlx2y 
is mult inomial  with parameter n and probabilities Px~x2y" 

The likelihood function is 

n~ l(c~, 0 ) -  I~ e#+a(x'+x2+Y)+~ 
l ~  n x l x 2 y !  Xl, X2,y 

. . . . . .  y (16) 

and estimates of parameters and of their standard errors 
can be obtained under the constraint 

~ ,  e # +ct (xl + x2+ y) + 0(xl y +x2 y) ~ 1. 

x l ,x2 ,y  

The statistic 2t9 gives an estimator of heritability on the 

logistic scale. 
Note in (13a)-(13c) that a heritability of 0 implies 

noo = n01 = n11. From (8), this also implies that the mean 
value of the offspring is expected to be the same irrespec- 
tive of the scores of the parents. Also, using (8) and (12) 
it can be seen that if 0 = 0 

E(YI Xi = xl, X 2  : x2 )  : ~ . . . .  

e # + a ( x l + x 2 +  1) eCt 
(17) 

= e U + ~ ( X l + X 2 ) + e U + ~ ( x x + x 2 + l )  = l + e  a" 
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